Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional.

نویسندگان

  • Joseph A DiDonato
  • Kulwant Aulak
  • Ying Huang
  • Matthew Wagner
  • Gary Gerstenecker
  • Celalettin Topbas
  • Valentin Gogonea
  • Anthony J DiDonato
  • W H Wilson Tang
  • Ryan A Mehl
  • Paul L Fox
  • Edward F Plow
  • Jonathan D Smith
  • Edward A Fisher
  • Stanley L Hazen
چکیده

We reported previously that apolipoprotein A-I (apoA-I) is oxidatively modified in the artery wall at tyrosine 166 (Tyr(166)), serving as a preferred site for post-translational modification through nitration. Recent studies, however, question the extent and functional importance of apoA-I Tyr(166) nitration based upon studies of HDL-like particles recovered from atherosclerotic lesions. We developed a monoclonal antibody (mAb 4G11.2) that recognizes, in both free and HDL-bound forms, apoA-I harboring a 3-nitrotyrosine at position 166 apoA-I (NO2-Tyr(166)-apoA-I) to investigate the presence, distribution, and function of this modified apoA-I form in atherosclerotic and normal artery wall. We also developed recombinant apoA-I with site-specific 3-nitrotyrosine incorporation only at position 166 using an evolved orthogonal nitro-Tyr-aminoacyl-tRNA synthetase/tRNACUA pair for functional studies. Studies with mAb 4G11.2 showed that NO2-Tyr(166)-apoA-I was easily detected in atherosclerotic human coronary arteries and accounted for ∼ 8% of total apoA-I within the artery wall but was nearly undetectable (>100-fold less) in normal coronary arteries. Buoyant density ultracentrifugation analyses showed that NO2-Tyr(166)-apoA-I existed as a lipid-poor lipoprotein with <3% recovered within the HDL-like fraction (d = 1.063-1.21). NO2-Tyr(166)-apoA-I in plasma showed a similar distribution. Recovery of NO2-Tyr(166)-apoA-I using immobilized mAb 4G11.2 showed an apoA-I form with 88.1 ± 8.5% reduction in lecithin-cholesterol acyltransferase activity, a finding corroborated using a recombinant apoA-I specifically designed to include the unnatural amino acid exclusively at position 166. Thus, site-specific nitration of apoA-I at Tyr(166) is an abundant modification within the artery wall that results in selective functional impairments. Plasma levels of this modified apoA-I form may provide insights into a pathophysiological process within the diseased artery wall.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myeloperoxidase Targets Apolipoprotein A-I, the Major HDL Protein, for Site-Specific Oxidation in Human Atherosclerotic Lesions

Background: Oxidation of apolipoprotein A-I by myeloperoxidase has been proposed to deprive HDL of its cardioprotective effects. Result: Tyrosine 192 is the major site of chlorination in apoA-I in both plasma and lesion HDL isolated from humans. Conclusion: Chlorination of apolipoprotein A-I by myeloperoxidase generates a dysfunctional form of HDL in vivo. Significance: Quantifying apolipoprote...

متن کامل

Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging.

Nitration of protein tyrosine residues (nY) is a marker of oxidative stress and may alter the biological activity of the modified proteins. The aim of this study was to develop antibodies toward site-specific nY-modified proteins and to use histochemistry and immunoblotting to demonstrate protein nitration in tissues. Affinity-purified polyclonal antibodies toward peptides with known nY sites i...

متن کامل

Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease.

In recent studies we demonstrated that systemic levels of protein-bound nitrotyrosine (NO(2)Tyr) and myeloperoxidase (MPO), a protein that catalyzes generation of nitrating oxidants, serve as independent predictors of atherosclerotic risk, burden, and incident cardiac events. We now show both that apolipoprotein A-I (apoA-I), the primary protein constituent of HDL, is a selective target for MPO...

متن کامل

Effects of native and myeloperoxidase-modified apolipoprotein a-I on reverse cholesterol transport and atherosclerosis in mice.

OBJECTIVE Preclinical and clinical studies have shown beneficial effects of infusions of apolipoprotein A-I (ApoA-I) on atherosclerosis. ApoA-I is also a target for myeloperoxidase-mediated oxidation, leading in vitro to a loss of its ability to promote ATP-binding cassette transporter A1-dependent macrophage cholesterol efflux. Therefore, we hypothesized that myeloperoxidase-mediated ApoA-I ox...

متن کامل

Molecular characterization of apolipoprotein A-I from the skin mucosa of Cyprinus carpio

Apolipoprotein A-I is the most abundant protein in Cyprinus carpio plasma that plays an important role in lipid transport and protection of the skin by means of its antimicrobial activity. A 527 bp cDNA fragment encoding C terminus part of apoA-I from the skin mucosa of common carp was isolated using RT-PCR. After GenBank database searching, a partial sequence containing a coding sequence (CDS)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 289 15  شماره 

صفحات  -

تاریخ انتشار 2014